Metamath Proof Explorer


Theorem rspceb2dv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses rspceb2dv.1 ( ( 𝜑𝑥𝐵 ) → ( 𝜓𝜒 ) )
rspceb2dv.2 ( ( 𝜑𝜒 ) → 𝐴𝐵 )
rspceb2dv.3 ( ( 𝜑𝜒 ) → 𝜃 )
rspceb2dv.4 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
Assertion rspceb2dv ( 𝜑 → ( ∃ 𝑥𝐵 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rspceb2dv.1 ( ( 𝜑𝑥𝐵 ) → ( 𝜓𝜒 ) )
2 rspceb2dv.2 ( ( 𝜑𝜒 ) → 𝐴𝐵 )
3 rspceb2dv.3 ( ( 𝜑𝜒 ) → 𝜃 )
4 rspceb2dv.4 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
5 1 rexlimdva ( 𝜑 → ( ∃ 𝑥𝐵 𝜓𝜒 ) )
6 4 rspcev ( ( 𝐴𝐵𝜃 ) → ∃ 𝑥𝐵 𝜓 )
7 2 3 6 syl2anc ( ( 𝜑𝜒 ) → ∃ 𝑥𝐵 𝜓 )
8 7 ex ( 𝜑 → ( 𝜒 → ∃ 𝑥𝐵 𝜓 ) )
9 5 8 impbid ( 𝜑 → ( ∃ 𝑥𝐵 𝜓𝜒 ) )