Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| rspcdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| rspcebdv.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) | ||
| Assertion | rspcebdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | rspcdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | rspcebdv.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) | |
| 4 | 3 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 5 | 4 | biimpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 → 𝜒 ) ) |
| 6 | 5 | expcom | ⊢ ( 𝜓 → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
| 7 | 6 | pm2.43b | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 8 | 7 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| 9 | 1 2 | rspcedv | ⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 10 | 8 9 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ 𝜒 ) ) |