Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
rspcdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
rspcebdv.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) | ||
Assertion | rspcebdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
2 | rspcdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | rspcebdv.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) | |
4 | 3 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 ↔ 𝜒 ) ) |
5 | 4 | biimpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 → 𝜒 ) ) |
6 | 5 | expcom | ⊢ ( 𝜓 → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
7 | 6 | pm2.43b | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
8 | 7 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |
9 | 1 2 | rspcedv | ⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
10 | 8 9 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ 𝜒 ) ) |