Metamath Proof Explorer


Theorem rspcebdv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)

Ref Expression
Hypotheses rspcdv.1 ( 𝜑𝐴𝐵 )
rspcdv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
rspcebdv.1 ( ( 𝜑𝜓 ) → 𝑥 = 𝐴 )
Assertion rspcebdv ( 𝜑 → ( ∃ 𝑥𝐵 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rspcdv.1 ( 𝜑𝐴𝐵 )
2 rspcdv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 rspcebdv.1 ( ( 𝜑𝜓 ) → 𝑥 = 𝐴 )
4 3 2 syldan ( ( 𝜑𝜓 ) → ( 𝜓𝜒 ) )
5 4 biimpd ( ( 𝜑𝜓 ) → ( 𝜓𝜒 ) )
6 5 expcom ( 𝜓 → ( 𝜑 → ( 𝜓𝜒 ) ) )
7 6 pm2.43b ( 𝜑 → ( 𝜓𝜒 ) )
8 7 rexlimdvw ( 𝜑 → ( ∃ 𝑥𝐵 𝜓𝜒 ) )
9 1 2 rspcedv ( 𝜑 → ( 𝜒 → ∃ 𝑥𝐵 𝜓 ) )
10 8 9 impbid ( 𝜑 → ( ∃ 𝑥𝐵 𝜓𝜒 ) )