Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rspcedv
Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
(Contributed by FL , 17-Apr-2007) (Revised by Mario Carneiro , 4-Jan-2017)
Ref
Expression
Hypotheses
rspcdv.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 )
rspcdv.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
Assertion
rspcedv
⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
rspcdv.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 )
2
rspcdv.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
3
2
biimprd
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜒 → 𝜓 ) )
4
1 3
rspcimedv
⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) )