Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
Variant of rspcedv . (Contributed by AV, 27-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
rspcedvd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
|
|
rspcedvd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
|
|
rspcedvd.3 |
⊢ ( 𝜑 → 𝜒 ) |
|
Assertion |
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspcedvd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
2 |
|
rspcedvd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
rspcedvd.3 |
⊢ ( 𝜑 → 𝜒 ) |
4 |
1 2
|
rspcedv |
⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
5 |
3 4
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |