Metamath Proof Explorer


Theorem rspcedvd

Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv . (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses rspcedvd.1 ( 𝜑𝐴𝐵 )
rspcedvd.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
rspcedvd.3 ( 𝜑𝜒 )
Assertion rspcedvd ( 𝜑 → ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rspcedvd.1 ( 𝜑𝐴𝐵 )
2 rspcedvd.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 rspcedvd.3 ( 𝜑𝜒 )
4 1 2 rspcedv ( 𝜑 → ( 𝜒 → ∃ 𝑥𝐵 𝜓 ) )
5 3 4 mpd ( 𝜑 → ∃ 𝑥𝐵 𝜓 )