Description: A version of rspcev using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcegf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
rspcegf.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
rspcegf.3 | ⊢ Ⅎ 𝑥 𝐵 | ||
rspcegf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | rspcegf | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcegf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | rspcegf.2 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | rspcegf.3 | ⊢ Ⅎ 𝑥 𝐵 | |
4 | rspcegf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
5 | 2 3 | nfel | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
6 | 5 1 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) |
7 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
8 | 7 4 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
9 | 2 6 8 | spcegf | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
10 | 9 | anabsi5 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
11 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
12 | 10 11 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |