Metamath Proof Explorer


Theorem rspcegf

Description: A version of rspcev using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rspcegf.1 𝑥 𝜓
rspcegf.2 𝑥 𝐴
rspcegf.3 𝑥 𝐵
rspcegf.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rspcegf ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 rspcegf.1 𝑥 𝜓
2 rspcegf.2 𝑥 𝐴
3 rspcegf.3 𝑥 𝐵
4 rspcegf.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
5 2 3 nfel 𝑥 𝐴𝐵
6 5 1 nfan 𝑥 ( 𝐴𝐵𝜓 )
7 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
8 7 4 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝜑 ) ↔ ( 𝐴𝐵𝜓 ) ) )
9 2 6 8 spcegf ( 𝐴𝐵 → ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
10 9 anabsi5 ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
11 df-rex ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
12 10 11 sylibr ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥𝐵 𝜑 )