| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspcimdv.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 2 |
|
rspcimdv.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) ) |
| 3 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
| 5 |
4
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 6 |
5
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 7 |
6 2
|
imim12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐵 → 𝜓 ) → ( 𝐴 ∈ 𝐵 → 𝜒 ) ) ) |
| 8 |
1 7
|
spcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) → ( 𝐴 ∈ 𝐵 → 𝜒 ) ) ) |
| 9 |
1 8
|
mpid |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) → 𝜒 ) ) |
| 10 |
3 9
|
biimtrid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |