Metamath Proof Explorer


Theorem rspcimdv

Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcimdv.1 ( 𝜑𝐴𝐵 )
rspcimdv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion rspcimdv ( 𝜑 → ( ∀ 𝑥𝐵 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rspcimdv.1 ( 𝜑𝐴𝐵 )
2 rspcimdv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 df-ral ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐵𝜓 ) )
4 simpr ( ( 𝜑𝑥 = 𝐴 ) → 𝑥 = 𝐴 )
5 4 eleq1d ( ( 𝜑𝑥 = 𝐴 ) → ( 𝑥𝐵𝐴𝐵 ) )
6 5 biimprd ( ( 𝜑𝑥 = 𝐴 ) → ( 𝐴𝐵𝑥𝐵 ) )
7 6 2 imim12d ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝑥𝐵𝜓 ) → ( 𝐴𝐵𝜒 ) ) )
8 1 7 spcimdv ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐵𝜓 ) → ( 𝐴𝐵𝜒 ) ) )
9 1 8 mpid ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐵𝜓 ) → 𝜒 ) )
10 3 9 syl5bi ( 𝜑 → ( ∀ 𝑥𝐵 𝜓𝜒 ) )