Metamath Proof Explorer


Theorem rspcimedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcimdv.1 ( 𝜑𝐴𝐵 )
rspcimedv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜒𝜓 ) )
Assertion rspcimedv ( 𝜑 → ( 𝜒 → ∃ 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspcimdv.1 ( 𝜑𝐴𝐵 )
2 rspcimedv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜒𝜓 ) )
3 2 con3d ( ( 𝜑𝑥 = 𝐴 ) → ( ¬ 𝜓 → ¬ 𝜒 ) )
4 1 3 rspcimdv ( 𝜑 → ( ∀ 𝑥𝐵 ¬ 𝜓 → ¬ 𝜒 ) )
5 4 con2d ( 𝜑 → ( 𝜒 → ¬ ∀ 𝑥𝐵 ¬ 𝜓 ) )
6 dfrex2 ( ∃ 𝑥𝐵 𝜓 ↔ ¬ ∀ 𝑥𝐵 ¬ 𝜓 )
7 5 6 syl6ibr ( 𝜑 → ( 𝜒 → ∃ 𝑥𝐵 𝜓 ) )