Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcimdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| rspcimedv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜒 → 𝜓 ) ) | ||
| Assertion | rspcimedv | ⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcimdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | rspcimedv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜒 → 𝜓 ) ) | |
| 3 | 2 | con3d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ¬ 𝜓 → ¬ 𝜒 ) ) |
| 4 | 1 3 | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ¬ 𝜓 → ¬ 𝜒 ) ) |
| 5 | 4 | con2d | ⊢ ( 𝜑 → ( 𝜒 → ¬ ∀ 𝑥 ∈ 𝐵 ¬ 𝜓 ) ) |
| 6 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐵 ¬ 𝜓 ) | |
| 7 | 5 6 | imbitrrdi | ⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |