| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspcl.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 2 |
|
rspcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
rspcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 4 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 5 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 6 |
2 5
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 7 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 8 |
3 7
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 9 |
|
rspval |
⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 |
1 9
|
eqtri |
⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 |
6 8 10
|
lspcl |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝑈 ) |
| 12 |
4 11
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝑈 ) |