Metamath Proof Explorer


Theorem rspcl

Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
rspcl.b 𝐵 = ( Base ‘ 𝑅 )
rspcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
Assertion rspcl ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝐾𝐺 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
2 rspcl.b 𝐵 = ( Base ‘ 𝑅 )
3 rspcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
4 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
5 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
6 2 5 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
7 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
8 3 7 eqtri 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
9 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
10 1 9 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
11 6 8 10 lspcl ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺𝐵 ) → ( 𝐾𝐺 ) ∈ 𝑈 )
12 4 11 sylan ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝐾𝐺 ) ∈ 𝑈 )