Description: Special case related to rspsbc . (Contributed by NM, 10-Dec-2005) (Proof shortened by Eric Schmidt, 17-Jan-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | rspcsbela | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [ 𝐴 / 𝑥 ] 𝐶 ∈ 𝐷 ) ) | |
2 | sbcel1g | ⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ∈ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝐷 ) ) | |
3 | 1 2 | sylibd | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝐷 ) ) |
4 | 3 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝐷 ) |