Metamath Proof Explorer


Theorem rspcsbela

Description: Special case related to rspsbc . (Contributed by NM, 10-Dec-2005) (Proof shortened by Eric Schmidt, 17-Jan-2007)

Ref Expression
Assertion rspcsbela ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝐶𝐷 ) → 𝐴 / 𝑥 𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 rspsbc ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝐶𝐷[ 𝐴 / 𝑥 ] 𝐶𝐷 ) )
2 sbcel1g ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶𝐷 𝐴 / 𝑥 𝐶𝐷 ) )
3 1 2 sylibd ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝐶𝐷 𝐴 / 𝑥 𝐶𝐷 ) )
4 3 imp ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝐶𝐷 ) → 𝐴 / 𝑥 𝐶𝐷 )