Step |
Hyp |
Ref |
Expression |
1 |
|
rspct.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) |
3 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
5 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝜑 ↔ 𝜓 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
6 |
4 5
|
imbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
7 |
6
|
ex |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
8 |
7
|
a2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
9 |
8
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
11 |
10 1
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 → 𝜓 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
13 |
11 12
|
spcgft |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
14 |
9 13
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
15 |
2 14
|
syl7bi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) ) |
16 |
15
|
com34 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) ) ) |
17 |
16
|
pm2.43d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) ) |