Description: Restricted specialization. (Contributed by NM, 12-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rspe | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐴 𝜑 ) |