Description: Specialization rule for restricted quantification, with three quantifiers. (Contributed by NM, 20-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspec3.1 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 | |
| Assertion | rspec3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspec3.1 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 | |
| 2 | 1 | rspec2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜑 ) | 
| 3 | 2 | r19.21bi | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) | 
| 4 | 3 | 3impa | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) |