Metamath Proof Explorer


Theorem rspesbca

Description: Existence form of rspsbca . (Contributed by NM, 29-Feb-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion rspesbca ( ( 𝐴𝐵[ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
2 1 rspcev ( ( 𝐴𝐵[ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑦𝐵 [ 𝑦 / 𝑥 ] 𝜑 )
3 cbvrexsvw ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑦𝐵 [ 𝑦 / 𝑥 ] 𝜑 )
4 2 3 sylibr ( ( 𝐴𝐵[ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥𝐵 𝜑 )