Description: Existence form of rspsbca . (Contributed by NM, 29-Feb-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | rspesbca | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
2 | 1 | rspcev | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑦 ∈ 𝐵 [ 𝑦 / 𝑥 ] 𝜑 ) |
3 | cbvrexsvw | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑦 / 𝑥 ] 𝜑 ) | |
4 | 2 3 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |