Metamath Proof Explorer


Theorem rspn0

Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion rspn0 ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 exim ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥 𝜑 ) )
4 ax5e ( ∃ 𝑥 𝜑𝜑 )
5 3 4 syl6com ( ∃ 𝑥 𝑥𝐴 → ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → 𝜑 ) )
6 2 5 syl5bi ( ∃ 𝑥 𝑥𝐴 → ( ∀ 𝑥𝐴 𝜑𝜑 ) )
7 1 6 sylbi ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝜑𝜑 ) )