Metamath Proof Explorer


Theorem rspn0OLD

Description: Obsolete version of rspn0 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rspn0OLD ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
2 nfra1 𝑥𝑥𝐴 𝜑
3 nfv 𝑥 𝜑
4 2 3 nfim 𝑥 ( ∀ 𝑥𝐴 𝜑𝜑 )
5 rsp ( ∀ 𝑥𝐴 𝜑 → ( 𝑥𝐴𝜑 ) )
6 5 com12 ( 𝑥𝐴 → ( ∀ 𝑥𝐴 𝜑𝜑 ) )
7 4 6 exlimi ( ∃ 𝑥 𝑥𝐴 → ( ∀ 𝑥𝐴 𝜑𝜑 ) )
8 1 7 sylbi ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝜑𝜑 ) )