Step |
Hyp |
Ref |
Expression |
1 |
|
idd |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ 𝐷 → 𝐶 ∈ 𝐷 ) ) |
2 |
|
rspsbc |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
3 |
2
|
a1d |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐷 𝜑 ) ) ) |
4 |
|
sbcralg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐷 𝜑 ↔ ∀ 𝑦 ∈ 𝐷 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐷 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
6 |
3 5
|
syl6d |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐷 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
7 |
|
rspsbc |
⊢ ( 𝐶 ∈ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) ) |
8 |
1 6 7
|
syl10 |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → [ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |