| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idd | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐶  ∈  𝐷  →  𝐶  ∈  𝐷 ) ) | 
						
							| 2 |  | rspsbc | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐷 𝜑  →  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐷 𝜑 ) ) | 
						
							| 3 | 2 | a1d | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐶  ∈  𝐷  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐷 𝜑  →  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐷 𝜑 ) ) ) | 
						
							| 4 |  | sbcralg | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐷 𝜑  ↔  ∀ 𝑦  ∈  𝐷 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 5 | 4 | biimpd | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐷 𝜑  →  ∀ 𝑦  ∈  𝐷 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 6 | 3 5 | syl6d | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐶  ∈  𝐷  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐷 𝜑  →  ∀ 𝑦  ∈  𝐷 [ 𝐴  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 7 |  | rspsbc | ⊢ ( 𝐶  ∈  𝐷  →  ( ∀ 𝑦  ∈  𝐷 [ 𝐴  /  𝑥 ] 𝜑  →  [ 𝐶  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 | 1 6 7 | syl10 | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐶  ∈  𝐷  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐷 𝜑  →  [ 𝐶  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) ) ) |