| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspsn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rspsn.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 3 |
|
rspsn.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) |
| 5 |
4
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 6 |
5
|
rexbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 7 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 8 |
|
rlmsca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 9 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 10 |
9 1
|
strfvi |
⊢ 𝐵 = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 11 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 12 |
1 11
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 13 |
|
rlmvsca |
⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) |
| 14 |
|
rspval |
⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 15 |
2 14
|
eqtri |
⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 16 |
8 10 12 13 15
|
ellspsn |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ) ) |
| 17 |
7 16
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ) ) |
| 18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 19 |
1 3 18
|
dvdsr2 |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐺 ∥ 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∥ 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 21 |
6 17 20
|
3bitr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝐺 ∥ 𝑥 ) ) |
| 22 |
21
|
eqabdv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |