Metamath Proof Explorer


Theorem rspsn

Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses rspsn.b 𝐵 = ( Base ‘ 𝑅 )
rspsn.k 𝐾 = ( RSpan ‘ 𝑅 )
rspsn.d = ( ∥r𝑅 )
Assertion rspsn ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥𝐺 𝑥 } )

Proof

Step Hyp Ref Expression
1 rspsn.b 𝐵 = ( Base ‘ 𝑅 )
2 rspsn.k 𝐾 = ( RSpan ‘ 𝑅 )
3 rspsn.d = ( ∥r𝑅 )
4 eqcom ( 𝑥 = ( 𝑎 ( .r𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r𝑅 ) 𝐺 ) = 𝑥 )
5 4 a1i ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝑥 = ( 𝑎 ( .r𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r𝑅 ) 𝐺 ) = 𝑥 ) )
6 5 rexbidv ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( ∃ 𝑎𝐵 𝑥 = ( 𝑎 ( .r𝑅 ) 𝐺 ) ↔ ∃ 𝑎𝐵 ( 𝑎 ( .r𝑅 ) 𝐺 ) = 𝑥 ) )
7 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
8 rlmsca2 ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )
9 baseid Base = Slot ( Base ‘ ndx )
10 9 1 strfvi 𝐵 = ( Base ‘ ( I ‘ 𝑅 ) )
11 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
12 1 11 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
13 rlmvsca ( .r𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) )
14 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
15 2 14 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
16 8 10 12 13 15 lspsnel ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎𝐵 𝑥 = ( 𝑎 ( .r𝑅 ) 𝐺 ) ) )
17 7 16 sylan ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎𝐵 𝑥 = ( 𝑎 ( .r𝑅 ) 𝐺 ) ) )
18 eqid ( .r𝑅 ) = ( .r𝑅 )
19 1 3 18 dvdsr2 ( 𝐺𝐵 → ( 𝐺 𝑥 ↔ ∃ 𝑎𝐵 ( 𝑎 ( .r𝑅 ) 𝐺 ) = 𝑥 ) )
20 19 adantl ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝐺 𝑥 ↔ ∃ 𝑎𝐵 ( 𝑎 ( .r𝑅 ) 𝐺 ) = 𝑥 ) )
21 6 17 20 3bitr4d ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝐺 𝑥 ) )
22 21 abbi2dv ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥𝐺 𝑥 } )