Step |
Hyp |
Ref |
Expression |
1 |
|
rspsn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rspsn.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
rspsn.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) |
5 |
4
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
6 |
5
|
rexbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
7 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
8 |
|
rlmsca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
9 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
10 |
9 1
|
strfvi |
⊢ 𝐵 = ( Base ‘ ( I ‘ 𝑅 ) ) |
11 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
12 |
1 11
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
13 |
|
rlmvsca |
⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) |
14 |
|
rspval |
⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
15 |
2 14
|
eqtri |
⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
16 |
8 10 12 13 15
|
lspsnel |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ) ) |
17 |
7 16
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ) ) |
18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
19 |
1 3 18
|
dvdsr2 |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐺 ∥ 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∥ 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
21 |
6 17 20
|
3bitr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝐺 ∥ 𝑥 ) ) |
22 |
21
|
abbi2dv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |