Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
rspcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
Assertion | rspssid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵 ) → 𝐺 ⊆ ( 𝐾 ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
2 | rspcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
3 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
4 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
5 | 2 4 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
6 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
7 | 1 6 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
8 | 5 7 | lspssid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺 ⊆ 𝐵 ) → 𝐺 ⊆ ( 𝐾 ‘ 𝐺 ) ) |
9 | 3 8 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵 ) → 𝐺 ⊆ ( 𝐾 ‘ 𝐺 ) ) |