Metamath Proof Explorer


Theorem rspssid

Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
rspcl.b 𝐵 = ( Base ‘ 𝑅 )
Assertion rspssid ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → 𝐺 ⊆ ( 𝐾𝐺 ) )

Proof

Step Hyp Ref Expression
1 rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
2 rspcl.b 𝐵 = ( Base ‘ 𝑅 )
3 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
4 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
5 2 4 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
6 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
7 1 6 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
8 5 7 lspssid ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺𝐵 ) → 𝐺 ⊆ ( 𝐾𝐺 ) )
9 3 8 sylan ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → 𝐺 ⊆ ( 𝐾𝐺 ) )