Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
rspssp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
Assertion | rspssp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐼 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
2 | rspssp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
3 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
4 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
5 | 2 4 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
6 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
7 | 1 6 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
8 | 5 7 | lspssp | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐼 ) |
9 | 3 8 | syl3an1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐼 ) |