Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| rspssp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | rspssp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 2 | rspssp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 3 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 4 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 5 | 2 4 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 6 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 7 | 1 6 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 8 | 5 7 | lspssp | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐼 ) |
| 9 | 3 8 | syl3an1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐼 ) |