Metamath Proof Explorer


Theorem rspssp

Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
rspssp.u 𝑈 = ( LIdeal ‘ 𝑅 )
Assertion rspssp ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐼 ) → ( 𝐾𝐺 ) ⊆ 𝐼 )

Proof

Step Hyp Ref Expression
1 rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
2 rspssp.u 𝑈 = ( LIdeal ‘ 𝑅 )
3 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
4 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
5 2 4 eqtri 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
6 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
7 1 6 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
8 5 7 lspssp ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼𝑈𝐺𝐼 ) → ( 𝐾𝐺 ) ⊆ 𝐼 )
9 3 8 syl3an1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐼 ) → ( 𝐾𝐺 ) ⊆ 𝐼 )