Metamath Proof Explorer


Theorem rspval

Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion rspval ( RSpan ‘ 𝑊 ) = ( LSpan ‘ ( ringLMod ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 df-rsp RSpan = ( LSpan ∘ ringLMod )
2 1 fveq1i ( RSpan ‘ 𝑊 ) = ( ( LSpan ∘ ringLMod ) ‘ 𝑊 )
3 00lsp ∅ = ( LSpan ‘ ∅ )
4 rlmfn ringLMod Fn V
5 fnfun ( ringLMod Fn V → Fun ringLMod )
6 4 5 ax-mp Fun ringLMod
7 3 6 fvco4i ( ( LSpan ∘ ringLMod ) ‘ 𝑊 ) = ( LSpan ‘ ( ringLMod ‘ 𝑊 ) )
8 2 7 eqtri ( RSpan ‘ 𝑊 ) = ( LSpan ‘ ( ringLMod ‘ 𝑊 ) )