Metamath Proof Explorer


Theorem ruALT

Description: Alternate proof of ru , simplified using (indirectly) the Axiom of Regularity ax-reg . (Contributed by Alan Sare, 4-Oct-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ruALT { 𝑥𝑥𝑥 } ∉ V

Proof

Step Hyp Ref Expression
1 vprc ¬ V ∈ V
2 1 nelir V ∉ V
3 ruv { 𝑥𝑥𝑥 } = V
4 neleq1 ( { 𝑥𝑥𝑥 } = V → ( { 𝑥𝑥𝑥 } ∉ V ↔ V ∉ V ) )
5 3 4 ax-mp ( { 𝑥𝑥𝑥 } ∉ V ↔ V ∉ V )
6 2 5 mpbir { 𝑥𝑥𝑥 } ∉ V