Step |
Hyp |
Ref |
Expression |
1 |
|
pm5.19 |
⊢ ¬ ( 𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦 ) |
2 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦 ) ) |
3 |
|
df-nel |
⊢ ( 𝑥 ∉ 𝑥 ↔ ¬ 𝑥 ∈ 𝑥 ) |
4 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
5 |
4 4
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
7 |
3 6
|
bitrid |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∉ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
8 |
2 7
|
bibi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) ↔ ( 𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦 ) ) ) |
9 |
8
|
spvv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) → ( 𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
10 |
1 9
|
mto |
⊢ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) |
11 |
|
eqabb |
⊢ ( 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) ) |
12 |
10 11
|
mtbir |
⊢ ¬ 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } |
13 |
12
|
nex |
⊢ ¬ ∃ 𝑦 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } |
14 |
|
isset |
⊢ ( { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } ) |
15 |
13 14
|
mtbir |
⊢ ¬ { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∈ V |
16 |
15
|
nelir |
⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∉ V |