Metamath Proof Explorer


Theorem ruOLD

Description: Obsolete version of ru as of 20-Jun-2025. (Contributed by NM, 7-Aug-1994) Remove use of ax-13 . (Revised by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ruOLD { 𝑥𝑥𝑥 } ∉ V

Proof

Step Hyp Ref Expression
1 pm5.19 ¬ ( 𝑦𝑦 ↔ ¬ 𝑦𝑦 )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝑦𝑦𝑦 ) )
3 df-nel ( 𝑥𝑥 ↔ ¬ 𝑥𝑥 )
4 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
5 4 4 eleq12d ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑦 ) )
6 5 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦 ) )
7 3 6 bitrid ( 𝑥 = 𝑦 → ( 𝑥𝑥 ↔ ¬ 𝑦𝑦 ) )
8 2 7 bibi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝑦𝑥𝑥 ) ↔ ( 𝑦𝑦 ↔ ¬ 𝑦𝑦 ) ) )
9 8 spvv ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑥 ) → ( 𝑦𝑦 ↔ ¬ 𝑦𝑦 ) )
10 1 9 mto ¬ ∀ 𝑥 ( 𝑥𝑦𝑥𝑥 )
11 eqabb ( 𝑦 = { 𝑥𝑥𝑥 } ↔ ∀ 𝑥 ( 𝑥𝑦𝑥𝑥 ) )
12 10 11 mtbir ¬ 𝑦 = { 𝑥𝑥𝑥 }
13 12 nex ¬ ∃ 𝑦 𝑦 = { 𝑥𝑥𝑥 }
14 isset ( { 𝑥𝑥𝑥 } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑥𝑥𝑥 } )
15 13 14 mtbir ¬ { 𝑥𝑥𝑥 } ∈ V
16 15 nelir { 𝑥𝑥𝑥 } ∉ V