Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) |
2 |
|
ruc.2 |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) |
3 |
|
ruclem1.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
ruclem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
ruclem1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
6 |
|
ruclem1.6 |
⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) |
7 |
|
ruclem1.7 |
⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) |
8 |
2
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) = ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) 𝑀 ) ) |
9 |
3 4
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
10 |
|
simpr |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 𝑦 = 𝑀 ) |
11 |
10
|
breq2d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 𝑚 < 𝑦 ↔ 𝑚 < 𝑀 ) ) |
12 |
|
simpl |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 𝑥 = 〈 𝐴 , 𝐵 〉 ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
14 |
13
|
opeq1d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 = 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 ) |
15 |
12
|
fveq2d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 𝑚 + ( 2nd ‘ 𝑥 ) ) = ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) = ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) ) |
18 |
17 15
|
opeq12d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) |
19 |
11 14 18
|
ifbieq12d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) = if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
20 |
19
|
csbeq2dv |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) = ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
21 |
13 15
|
oveq12d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) = ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) ) |
23 |
22
|
csbeq1d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
24 |
20 23
|
eqtrd |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) |
26 |
|
opex |
⊢ 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 ∈ V |
27 |
|
opex |
⊢ 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ∈ V |
28 |
26 27
|
ifex |
⊢ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ∈ V |
29 |
28
|
csbex |
⊢ ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ∈ V |
30 |
24 25 29
|
ovmpoa |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) 𝑀 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
31 |
9 5 30
|
syl2anc |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) 𝑀 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
32 |
8 31
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
33 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
34 |
3 4 33
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
35 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
36 |
3 4 35
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
37 |
34 36
|
oveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝐴 + 𝐵 ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
39 |
38
|
csbeq1d |
⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = ⦋ ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
40 |
|
ovex |
⊢ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V |
41 |
|
breq1 |
⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( 𝑚 < 𝑀 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) ) |
42 |
|
opeq2 |
⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 = 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) |
43 |
|
oveq1 |
⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
44 |
43
|
oveq1d |
⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) ) |
45 |
44
|
opeq1d |
⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 = 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) |
46 |
41 42 45
|
ifbieq12d |
⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
47 |
40 46
|
csbie |
⊢ ⦋ ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) |
48 |
34
|
opeq1d |
⊢ ( 𝜑 → 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 = 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) |
49 |
36
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ) |
50 |
49
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
51 |
50 36
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 = 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) |
52 |
48 51
|
ifeq12d |
⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
53 |
47 52
|
eqtrid |
⊢ ( 𝜑 → ⦋ ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
54 |
39 53
|
eqtrd |
⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
55 |
32 54
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
56 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
57 |
56
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
58 |
3 57
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ∈ ( ℝ × ℝ ) ) |
59 |
57 4
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ∈ ℝ ) |
60 |
59
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) |
61 |
60 4
|
opelxpd |
⊢ ( 𝜑 → 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
62 |
58 61
|
ifcld |
⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ∈ ( ℝ × ℝ ) ) |
63 |
55 62
|
eqeltrd |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ) |
64 |
55
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) ) |
65 |
|
fvif |
⊢ ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
66 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V ) → ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = 𝐴 ) |
67 |
3 40 66
|
sylancl |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = 𝐴 ) |
68 |
|
ovex |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V |
69 |
|
op1stg |
⊢ ( ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
70 |
68 4 69
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
71 |
67 70
|
ifeq12d |
⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
72 |
65 71
|
eqtrid |
⊢ ( 𝜑 → ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
73 |
64 72
|
eqtrd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
74 |
6 73
|
eqtrid |
⊢ ( 𝜑 → 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
75 |
55
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) ) |
76 |
|
fvif |
⊢ ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
77 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V ) → ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
78 |
3 40 77
|
sylancl |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
79 |
|
op2ndg |
⊢ ( ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = 𝐵 ) |
80 |
68 4 79
|
sylancr |
⊢ ( 𝜑 → ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = 𝐵 ) |
81 |
78 80
|
ifeq12d |
⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
82 |
76 81
|
eqtrid |
⊢ ( 𝜑 → ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
83 |
75 82
|
eqtrd |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
84 |
7 83
|
eqtrid |
⊢ ( 𝜑 → 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
85 |
63 74 84
|
3jca |
⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |