| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ruc.1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ℝ ) | 
						
							| 2 |  | ruc.2 | ⊢ ( 𝜑  →  𝐷  =  ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 3 |  | ruclem1.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | ruclem1.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | ruclem1.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 6 |  | ruclem1.6 | ⊢ 𝑋  =  ( 1st  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) ) | 
						
							| 7 |  | ruclem1.7 | ⊢ 𝑌  =  ( 2nd  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) ) | 
						
							| 8 | 2 | oveqd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 )  =  ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) 𝑀 ) ) | 
						
							| 9 | 3 4 | opelxpd | ⊢ ( 𝜑  →  〈 𝐴 ,  𝐵 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  𝑦  =  𝑀 ) | 
						
							| 11 | 10 | breq2d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( 𝑚  <  𝑦  ↔  𝑚  <  𝑀 ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  𝑥  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 14 | 13 | opeq1d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉  =  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ) | 
						
							| 15 | 12 | fveq2d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  =  ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  =  ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ) | 
						
							| 18 | 17 15 | opeq12d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉  =  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) | 
						
							| 19 | 11 14 18 | ifbieq12d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 )  =  if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 20 | 19 | csbeq2dv | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 )  =  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 21 | 13 15 | oveq12d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  =  ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ) | 
						
							| 23 | 22 | csbeq1d | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑥  =  〈 𝐴 ,  𝐵 〉  ∧  𝑦  =  𝑀 )  →  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 )  =  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) )  =  ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) | 
						
							| 26 |  | opex | ⊢ 〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉  ∈  V | 
						
							| 27 |  | opex | ⊢ 〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉  ∈  V | 
						
							| 28 | 26 27 | ifex | ⊢ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  ∈  V | 
						
							| 29 | 28 | csbex | ⊢ ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  ∈  V | 
						
							| 30 | 24 25 29 | ovmpoa | ⊢ ( ( 〈 𝐴 ,  𝐵 〉  ∈  ( ℝ  ×  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) 𝑀 )  =  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 31 | 9 5 30 | syl2anc | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) 𝑀 )  =  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 32 | 8 31 | eqtrd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 )  =  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 33 |  | op1stg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 34 | 3 4 33 | syl2anc | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 35 |  | op2ndg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 36 | 3 4 35 | syl2anc | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 37 | 34 36 | oveq12d | ⊢ ( 𝜑  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  =  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 39 | 38 | csbeq1d | ⊢ ( 𝜑  →  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  ⦋ ( ( 𝐴  +  𝐵 )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 40 |  | ovex | ⊢ ( ( 𝐴  +  𝐵 )  /  2 )  ∈  V | 
						
							| 41 |  | breq1 | ⊢ ( 𝑚  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  ( 𝑚  <  𝑀  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ) ) | 
						
							| 42 |  | opeq2 | ⊢ ( 𝑚  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉  =  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑚  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝑚  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  =  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ) | 
						
							| 45 | 44 | opeq1d | ⊢ ( 𝑚  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉  =  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) | 
						
							| 46 | 41 42 45 | ifbieq12d | ⊢ ( 𝑚  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) ) | 
						
							| 47 | 40 46 | csbie | ⊢ ⦋ ( ( 𝐴  +  𝐵 )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 ) | 
						
							| 48 | 34 | opeq1d | ⊢ ( 𝜑  →  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉  =  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ) | 
						
							| 49 | 36 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  =  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 51 | 50 36 | opeq12d | ⊢ ( 𝜑  →  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉  =  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) | 
						
							| 52 | 48 51 | ifeq12d | ⊢ ( 𝜑  →  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) | 
						
							| 53 | 47 52 | eqtrid | ⊢ ( 𝜑  →  ⦋ ( ( 𝐴  +  𝐵 )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) | 
						
							| 54 | 39 53 | eqtrd | ⊢ ( 𝜑  →  ⦋ ( ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑀 ,  〈 ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  /  2 ) ,  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) 〉 )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) | 
						
							| 55 | 32 54 | eqtrd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) | 
						
							| 56 | 3 4 | readdcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 57 | 56 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 58 | 3 57 | opelxpd | ⊢ ( 𝜑  →  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 59 | 57 4 | readdcld | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  ∈  ℝ ) | 
						
							| 60 | 59 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 61 | 60 4 | opelxpd | ⊢ ( 𝜑  →  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 62 | 58 61 | ifcld | ⊢ ( 𝜑  →  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 63 | 55 62 | eqeltrd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 64 | 55 | fveq2d | ⊢ ( 𝜑  →  ( 1st  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) )  =  ( 1st  ‘ if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) ) | 
						
							| 65 |  | fvif | ⊢ ( 1st  ‘ if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( 1st  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ) ,  ( 1st  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) | 
						
							| 66 |  | op1stg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  V )  →  ( 1st  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 )  =  𝐴 ) | 
						
							| 67 | 3 40 66 | sylancl | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 )  =  𝐴 ) | 
						
							| 68 |  | ovex | ⊢ ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 )  ∈  V | 
						
							| 69 |  | op1stg | ⊢ ( ( ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 )  ∈  V  ∧  𝐵  ∈  ℝ )  →  ( 1st  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 )  =  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 70 | 68 4 69 | sylancr | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 )  =  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 71 | 67 70 | ifeq12d | ⊢ ( 𝜑  →  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( 1st  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ) ,  ( 1st  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 72 | 65 71 | eqtrid | ⊢ ( 𝜑  →  ( 1st  ‘ if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 73 | 64 72 | eqtrd | ⊢ ( 𝜑  →  ( 1st  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 74 | 6 73 | eqtrid | ⊢ ( 𝜑  →  𝑋  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 75 | 55 | fveq2d | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) )  =  ( 2nd  ‘ if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) ) | 
						
							| 76 |  | fvif | ⊢ ( 2nd  ‘ if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( 2nd  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ) ,  ( 2nd  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) ) | 
						
							| 77 |  | op2ndg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  V )  →  ( 2nd  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 )  =  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 78 | 3 40 77 | sylancl | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 )  =  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 79 |  | op2ndg | ⊢ ( ( ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 )  ∈  V  ∧  𝐵  ∈  ℝ )  →  ( 2nd  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 80 | 68 4 79 | sylancr | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 81 | 78 80 | ifeq12d | ⊢ ( 𝜑  →  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( 2nd  ‘ 〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ) ,  ( 2nd  ‘ 〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) | 
						
							| 82 | 76 81 | eqtrid | ⊢ ( 𝜑  →  ( 2nd  ‘ if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  〈 𝐴 ,  ( ( 𝐴  +  𝐵 )  /  2 ) 〉 ,  〈 ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ,  𝐵 〉 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) | 
						
							| 83 | 75 82 | eqtrd | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) )  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) | 
						
							| 84 | 7 83 | eqtrid | ⊢ ( 𝜑  →  𝑌  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) | 
						
							| 85 | 63 74 84 | 3jca | ⊢ ( 𝜑  →  ( ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 )  ∈  ( ℝ  ×  ℝ )  ∧  𝑋  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) )  ∧  𝑌  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) ) |