| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) |
| 2 |
|
ruc.2 |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) |
| 3 |
|
ruc.4 |
⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) |
| 4 |
|
ruc.5 |
⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) |
| 5 |
|
ruclem10.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 6 |
|
ruclem10.7 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 |
1 2 3 4
|
ruclem6 |
⊢ ( 𝜑 → 𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) ) |
| 8 |
7 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) ∈ ( ℝ × ℝ ) ) |
| 9 |
|
xp1st |
⊢ ( ( 𝐺 ‘ 𝑀 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ∈ ℝ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ∈ ℝ ) |
| 11 |
6 5
|
ifcld |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℕ0 ) |
| 12 |
7 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ ( ℝ × ℝ ) ) |
| 13 |
|
xp1st |
⊢ ( ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) |
| 15 |
7 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑁 ) ∈ ( ℝ × ℝ ) ) |
| 16 |
|
xp2nd |
⊢ ( ( 𝐺 ‘ 𝑁 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ∈ ℝ ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ∈ ℝ ) |
| 18 |
5
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 19 |
6
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 20 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 22 |
5
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 23 |
11
|
nn0zd |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) |
| 24 |
|
eluz |
⊢ ( ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 25 |
22 23 24
|
syl2anc |
⊢ ( 𝜑 → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 26 |
21 25
|
mpbird |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 27 |
1 2 3 4 5 26
|
ruclem9 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ≤ ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∧ ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑀 ) ) ) ) |
| 28 |
27
|
simpld |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ≤ ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 29 |
|
xp2nd |
⊢ ( ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) |
| 30 |
12 29
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) |
| 31 |
1 2 3 4
|
ruclem8 |
⊢ ( ( 𝜑 ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℕ0 ) → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) < ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 32 |
11 31
|
mpdan |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) < ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 33 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 34 |
18 19 33
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 35 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 36 |
|
eluz |
⊢ ( ( 𝑁 ∈ ℤ ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 37 |
35 23 36
|
syl2anc |
⊢ ( 𝜑 → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 38 |
34 37
|
mpbird |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 39 |
1 2 3 4 6 38
|
ruclem9 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ‘ 𝑁 ) ) ≤ ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∧ ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) ) |
| 40 |
39
|
simprd |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
| 41 |
14 30 17 32 40
|
ltletrd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) < ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
| 42 |
10 14 17 28 41
|
lelttrd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) < ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |