Step |
Hyp |
Ref |
Expression |
1 |
|
forn |
⊢ ( 𝐹 : ℕ –onto→ ℝ → ran 𝐹 = ℝ ) |
2 |
1
|
difeq2d |
⊢ ( 𝐹 : ℕ –onto→ ℝ → ( ℝ ∖ ran 𝐹 ) = ( ℝ ∖ ℝ ) ) |
3 |
|
difid |
⊢ ( ℝ ∖ ℝ ) = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐹 : ℕ –onto→ ℝ → ( ℝ ∖ ran 𝐹 ) = ∅ ) |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
5 5
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
7 |
6 5
|
mpoex |
⊢ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ∈ V |
8 |
7
|
isseti |
⊢ ∃ 𝑑 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) |
9 |
|
fof |
⊢ ( 𝐹 : ℕ –onto→ ℝ → 𝐹 : ℕ ⟶ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → 𝐹 : ℕ ⟶ ℝ ) |
11 |
|
simpr |
⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) |
12 |
|
eqid |
⊢ ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) |
13 |
|
eqid |
⊢ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) = seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) |
14 |
|
eqid |
⊢ sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) = sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) |
15 |
10 11 12 13 14
|
ruclem12 |
⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) ∈ ( ℝ ∖ ran 𝐹 ) ) |
16 |
|
n0i |
⊢ ( sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) ) ) , ℝ , < ) ∈ ( ℝ ∖ ran 𝐹 ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) |
18 |
17
|
ex |
⊢ ( 𝐹 : ℕ –onto→ ℝ → ( 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) ) |
19 |
18
|
exlimdv |
⊢ ( 𝐹 : ℕ –onto→ ℝ → ( ∃ 𝑑 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) ) |
20 |
8 19
|
mpi |
⊢ ( 𝐹 : ℕ –onto→ ℝ → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) |
21 |
4 20
|
pm2.65i |
⊢ ¬ 𝐹 : ℕ –onto→ ℝ |