Metamath Proof Explorer


Theorem ruclem13

Description: Lemma for ruc . There is no function that maps NN onto RR . (Use nex if you want this in the form -. E. f f : NN -onto-> RR .) (Contributed by NM, 14-Oct-2004) (Proof shortened by Fan Zheng, 6-Jun-2016)

Ref Expression
Assertion ruclem13 ¬ 𝐹 : ℕ –onto→ ℝ

Proof

Step Hyp Ref Expression
1 forn ( 𝐹 : ℕ –onto→ ℝ → ran 𝐹 = ℝ )
2 1 difeq2d ( 𝐹 : ℕ –onto→ ℝ → ( ℝ ∖ ran 𝐹 ) = ( ℝ ∖ ℝ ) )
3 difid ( ℝ ∖ ℝ ) = ∅
4 2 3 eqtrdi ( 𝐹 : ℕ –onto→ ℝ → ( ℝ ∖ ran 𝐹 ) = ∅ )
5 reex ℝ ∈ V
6 5 5 xpex ( ℝ × ℝ ) ∈ V
7 6 5 mpoex ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) ∈ V
8 7 isseti 𝑑 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) )
9 fof ( 𝐹 : ℕ –onto→ ℝ → 𝐹 : ℕ ⟶ ℝ )
10 9 adantr ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) ) → 𝐹 : ℕ ⟶ ℝ )
11 simpr ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) ) → 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) )
12 eqid ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) = ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 )
13 eqid seq 0 ( 𝑑 , ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) ) = seq 0 ( 𝑑 , ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) )
14 eqid sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) ) ) , ℝ , < ) = sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) ) ) , ℝ , < )
15 10 11 12 13 14 ruclem12 ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) ) → sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) ) ) , ℝ , < ) ∈ ( ℝ ∖ ran 𝐹 ) )
16 n0i ( sup ( ran ( 1st ∘ seq 0 ( 𝑑 , ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 ) ) ) , ℝ , < ) ∈ ( ℝ ∖ ran 𝐹 ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ )
17 15 16 syl ( ( 𝐹 : ℕ –onto→ ℝ ∧ 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ )
18 17 ex ( 𝐹 : ℕ –onto→ ℝ → ( 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) )
19 18 exlimdv ( 𝐹 : ℕ –onto→ ℝ → ( ∃ 𝑑 𝑑 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ ) )
20 8 19 mpi ( 𝐹 : ℕ –onto→ ℝ → ¬ ( ℝ ∖ ran 𝐹 ) = ∅ )
21 4 20 pm2.65i ¬ 𝐹 : ℕ –onto→ ℝ