| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ruc.1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ℝ ) | 
						
							| 2 |  | ruc.2 | ⊢ ( 𝜑  →  𝐷  =  ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 3 |  | ruclem1.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | ruclem1.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | ruclem1.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 6 |  | ruclem1.6 | ⊢ 𝑋  =  ( 1st  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) ) | 
						
							| 7 |  | ruclem1.7 | ⊢ 𝑌  =  ( 2nd  ‘ ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 ) ) | 
						
							| 8 |  | ruclem2.8 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 9 | 3 4 | readdcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 10 | 9 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 11 | 5 10 | lenltd | ⊢ ( 𝜑  →  ( 𝑀  ≤  ( ( 𝐴  +  𝐵 )  /  2 )  ↔  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ) ) | 
						
							| 12 |  | avglt2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵 ) ) | 
						
							| 13 | 3 4 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵 ) ) | 
						
							| 14 | 8 13 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵 ) | 
						
							| 15 |  | avglt1 | ⊢ ( ( ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 16 | 10 4 15 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 17 | 14 16 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  /  2 )  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 18 | 10 4 | readdcld | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  ∈  ℝ ) | 
						
							| 19 | 18 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 20 |  | lelttr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ  ∧  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 )  ∈  ℝ )  →  ( ( 𝑀  ≤  ( ( 𝐴  +  𝐵 )  /  2 )  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) )  →  𝑀  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 21 | 5 10 19 20 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑀  ≤  ( ( 𝐴  +  𝐵 )  /  2 )  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) )  →  𝑀  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 22 | 17 21 | mpan2d | ⊢ ( 𝜑  →  ( 𝑀  ≤  ( ( 𝐴  +  𝐵 )  /  2 )  →  𝑀  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 23 | 11 22 | sylbird | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀  →  𝑀  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝜑  ∧  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 )  →  𝑀  <  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 | ruclem1 | ⊢ ( 𝜑  →  ( ( 〈 𝐴 ,  𝐵 〉 𝐷 𝑀 )  ∈  ( ℝ  ×  ℝ )  ∧  𝑋  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) )  ∧  𝑌  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) ) | 
						
							| 26 | 25 | simp2d | ⊢ ( 𝜑  →  𝑋  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) ) | 
						
							| 27 |  | iffalse | ⊢ ( ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀  →  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  𝐴 ,  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) )  =  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 28 | 26 27 | sylan9eq | ⊢ ( ( 𝜑  ∧  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 )  →  𝑋  =  ( ( ( ( 𝐴  +  𝐵 )  /  2 )  +  𝐵 )  /  2 ) ) | 
						
							| 29 | 24 28 | breqtrrd | ⊢ ( ( 𝜑  ∧  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 )  →  𝑀  <  𝑋 ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀  →  𝑀  <  𝑋 ) ) | 
						
							| 31 | 30 | con1d | ⊢ ( 𝜑  →  ( ¬  𝑀  <  𝑋  →  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ) ) | 
						
							| 32 | 25 | simp3d | ⊢ ( 𝜑  →  𝑌  =  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 ) ) | 
						
							| 33 |  | iftrue | ⊢ ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀  →  if ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ,  ( ( 𝐴  +  𝐵 )  /  2 ) ,  𝐵 )  =  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 34 | 32 33 | sylan9eq | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 )  →  𝑌  =  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 )  →  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 ) | 
						
							| 36 | 34 35 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀 )  →  𝑌  <  𝑀 ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝑀  →  𝑌  <  𝑀 ) ) | 
						
							| 38 | 31 37 | syld | ⊢ ( 𝜑  →  ( ¬  𝑀  <  𝑋  →  𝑌  <  𝑀 ) ) | 
						
							| 39 | 38 | orrd | ⊢ ( 𝜑  →  ( 𝑀  <  𝑋  ∨  𝑌  <  𝑀 ) ) |