| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) |
| 2 |
|
ruc.2 |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) |
| 3 |
|
ruclem1.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
ruclem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
ruclem1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 6 |
|
ruclem1.6 |
⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) |
| 7 |
|
ruclem1.7 |
⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) |
| 8 |
|
ruclem2.8 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 9 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 10 |
9
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 11 |
5 10
|
lenltd |
⊢ ( 𝜑 → ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) ↔ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) ) |
| 12 |
|
avglt2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 13 |
3 4 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 14 |
8 13
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) |
| 15 |
|
avglt1 |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 16 |
10 4 15
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 17 |
14 16
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 18 |
10 4
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ∈ ℝ ) |
| 19 |
18
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) |
| 20 |
|
lelttr |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) → ( ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 21 |
5 10 19 20
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 22 |
17 21
|
mpan2d |
⊢ ( 𝜑 → ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 23 |
11 22
|
sylbird |
⊢ ( 𝜑 → ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 25 |
1 2 3 4 5 6 7
|
ruclem1 |
⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |
| 26 |
25
|
simp2d |
⊢ ( 𝜑 → 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 27 |
|
iffalse |
⊢ ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 28 |
26 27
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑋 = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 29 |
24 28
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑀 < 𝑋 ) |
| 30 |
29
|
ex |
⊢ ( 𝜑 → ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → 𝑀 < 𝑋 ) ) |
| 31 |
30
|
con1d |
⊢ ( 𝜑 → ( ¬ 𝑀 < 𝑋 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) ) |
| 32 |
25
|
simp3d |
⊢ ( 𝜑 → 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 33 |
|
iftrue |
⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 34 |
32 33
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑌 = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) |
| 36 |
34 35
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑌 < 𝑀 ) |
| 37 |
36
|
ex |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → 𝑌 < 𝑀 ) ) |
| 38 |
31 37
|
syld |
⊢ ( 𝜑 → ( ¬ 𝑀 < 𝑋 → 𝑌 < 𝑀 ) ) |
| 39 |
38
|
orrd |
⊢ ( 𝜑 → ( 𝑀 < 𝑋 ∨ 𝑌 < 𝑀 ) ) |