Metamath Proof Explorer


Theorem ruclem6

Description: Lemma for ruc . Domain and range of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 ( 𝜑𝐹 : ℕ ⟶ ℝ )
ruc.2 ( 𝜑𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) )
ruc.4 𝐶 = ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 )
ruc.5 𝐺 = seq 0 ( 𝐷 , 𝐶 )
Assertion ruclem6 ( 𝜑𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) )

Proof

Step Hyp Ref Expression
1 ruc.1 ( 𝜑𝐹 : ℕ ⟶ ℝ )
2 ruc.2 ( 𝜑𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) )
3 ruc.4 𝐶 = ( { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ∪ 𝐹 )
4 ruc.5 𝐺 = seq 0 ( 𝐷 , 𝐶 )
5 4 fveq1i ( 𝐺 ‘ 0 ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 )
6 0z 0 ∈ ℤ
7 seq1 ( 0 ∈ ℤ → ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) )
8 6 7 ax-mp ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) = ( 𝐶 ‘ 0 )
9 5 8 eqtri ( 𝐺 ‘ 0 ) = ( 𝐶 ‘ 0 )
10 1 2 3 4 ruclem4 ( 𝜑 → ( 𝐺 ‘ 0 ) = ⟨ 0 , 1 ⟩ )
11 9 10 eqtr3id ( 𝜑 → ( 𝐶 ‘ 0 ) = ⟨ 0 , 1 ⟩ )
12 0re 0 ∈ ℝ
13 1re 1 ∈ ℝ
14 opelxpi ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ⟨ 0 , 1 ⟩ ∈ ( ℝ × ℝ ) )
15 12 13 14 mp2an ⟨ 0 , 1 ⟩ ∈ ( ℝ × ℝ )
16 11 15 eqeltrdi ( 𝜑 → ( 𝐶 ‘ 0 ) ∈ ( ℝ × ℝ ) )
17 1st2nd2 ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
18 17 ad2antrl ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
19 18 oveq1d ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 𝑧 𝐷 𝑤 ) = ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) )
20 1 adantr ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝐹 : ℕ ⟶ ℝ )
21 2 adantr ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) )
22 xp1st ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st𝑧 ) ∈ ℝ )
23 22 ad2antrl ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 1st𝑧 ) ∈ ℝ )
24 xp2nd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd𝑧 ) ∈ ℝ )
25 24 ad2antrl ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 2nd𝑧 ) ∈ ℝ )
26 simprr ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝑤 ∈ ℝ )
27 eqid ( 1st ‘ ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) ) = ( 1st ‘ ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) )
28 eqid ( 2nd ‘ ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) ) = ( 2nd ‘ ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) )
29 20 21 23 25 26 27 28 ruclem1 ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) ∈ ( ℝ × ℝ ) ∧ ( 1st ‘ ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) ) = if ( ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) / 2 ) < 𝑤 , ( 1st𝑧 ) , ( ( ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) / 2 ) + ( 2nd𝑧 ) ) / 2 ) ) ∧ ( 2nd ‘ ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) ) = if ( ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) / 2 ) < 𝑤 , ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) / 2 ) , ( 2nd𝑧 ) ) ) )
30 29 simp1d ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ 𝐷 𝑤 ) ∈ ( ℝ × ℝ ) )
31 19 30 eqeltrd ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 𝑧 𝐷 𝑤 ) ∈ ( ℝ × ℝ ) )
32 nn0uz 0 = ( ℤ ‘ 0 )
33 0zd ( 𝜑 → 0 ∈ ℤ )
34 0p1e1 ( 0 + 1 ) = 1
35 34 fveq2i ( ℤ ‘ ( 0 + 1 ) ) = ( ℤ ‘ 1 )
36 nnuz ℕ = ( ℤ ‘ 1 )
37 35 36 eqtr4i ( ℤ ‘ ( 0 + 1 ) ) = ℕ
38 37 eleq2i ( 𝑧 ∈ ( ℤ ‘ ( 0 + 1 ) ) ↔ 𝑧 ∈ ℕ )
39 3 equncomi 𝐶 = ( 𝐹 ∪ { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } )
40 39 fveq1i ( 𝐶𝑧 ) = ( ( 𝐹 ∪ { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ) ‘ 𝑧 )
41 nnne0 ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 )
42 41 necomd ( 𝑧 ∈ ℕ → 0 ≠ 𝑧 )
43 fvunsn ( 0 ≠ 𝑧 → ( ( 𝐹 ∪ { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ) ‘ 𝑧 ) = ( 𝐹𝑧 ) )
44 42 43 syl ( 𝑧 ∈ ℕ → ( ( 𝐹 ∪ { ⟨ 0 , ⟨ 0 , 1 ⟩ ⟩ } ) ‘ 𝑧 ) = ( 𝐹𝑧 ) )
45 40 44 eqtrid ( 𝑧 ∈ ℕ → ( 𝐶𝑧 ) = ( 𝐹𝑧 ) )
46 45 adantl ( ( 𝜑𝑧 ∈ ℕ ) → ( 𝐶𝑧 ) = ( 𝐹𝑧 ) )
47 1 ffvelrnda ( ( 𝜑𝑧 ∈ ℕ ) → ( 𝐹𝑧 ) ∈ ℝ )
48 46 47 eqeltrd ( ( 𝜑𝑧 ∈ ℕ ) → ( 𝐶𝑧 ) ∈ ℝ )
49 38 48 sylan2b ( ( 𝜑𝑧 ∈ ( ℤ ‘ ( 0 + 1 ) ) ) → ( 𝐶𝑧 ) ∈ ℝ )
50 16 31 32 33 49 seqf2 ( 𝜑 → seq 0 ( 𝐷 , 𝐶 ) : ℕ0 ⟶ ( ℝ × ℝ ) )
51 4 feq1i ( 𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) ↔ seq 0 ( 𝐷 , 𝐶 ) : ℕ0 ⟶ ( ℝ × ℝ ) )
52 50 51 sylibr ( 𝜑𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) )