Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) |
2 |
|
ruc.2 |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) |
3 |
|
ruc.4 |
⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) |
4 |
|
ruc.5 |
⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
6 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
7 |
5 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
8 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( 𝐷 , 𝐶 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( seq 0 ( 𝐷 , 𝐶 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) ) |
10 |
4
|
fveq1i |
⊢ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ ( 𝑁 + 1 ) ) |
11 |
4
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑁 ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) |
12 |
11
|
oveq1i |
⊢ ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) |
13 |
9 10 12
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) ) |
14 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
16 |
15
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≠ 0 ) |
17 |
16
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 0 ≠ ( 𝑁 + 1 ) ) |
18 |
3
|
equncomi |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) |
19 |
18
|
fveq1i |
⊢ ( 𝐶 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ ( 𝑁 + 1 ) ) |
20 |
|
fvunsn |
⊢ ( 0 ≠ ( 𝑁 + 1 ) → ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
21 |
19 20
|
eqtrid |
⊢ ( 0 ≠ ( 𝑁 + 1 ) → ( 𝐶 ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
22 |
17 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐶 ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
24 |
13 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |