| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrnumwwlk.l | ⊢ 𝐿  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  𝑉 ) | 
						
							| 4 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 | 1 2 | rusgrnumwwlklem | ⊢ ( ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃 𝐿 𝑁 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 𝐿 𝑁 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 8 |  | rusgrusgr | ⊢ ( 𝐺  RegUSGraph  0  →  𝐺  ∈  USGraph ) | 
						
							| 9 |  | usgr0edg0rusgr | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  RegUSGraph  0  ↔  ( Edg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 10 | 9 | biimpcd | ⊢ ( 𝐺  RegUSGraph  0  →  ( 𝐺  ∈  USGraph  →  ( Edg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 11 | 8 10 | mpd | ⊢ ( 𝐺  RegUSGraph  0  →  ( Edg ‘ 𝐺 )  =  ∅ ) | 
						
							| 12 |  | 0enwwlksnge1 | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  WWalksN  𝐺 )  =  ∅ ) | 
						
							| 13 | 11 12 | sylan | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  WWalksN  𝐺 )  =  ∅ ) | 
						
							| 14 |  | eleq2 | ⊢ ( ( 𝑁  WWalksN  𝐺 )  =  ∅  →  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  𝑤  ∈  ∅ ) ) | 
						
							| 15 |  | noel | ⊢ ¬  𝑤  ∈  ∅ | 
						
							| 16 | 15 | pm2.21i | ⊢ ( 𝑤  ∈  ∅  →  ¬  ( 𝑤 ‘ 0 )  =  𝑃 ) | 
						
							| 17 | 14 16 | biimtrdi | ⊢ ( ( 𝑁  WWalksN  𝐺 )  =  ∅  →  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ¬  ( 𝑤 ‘ 0 )  =  𝑃 ) ) | 
						
							| 18 | 13 17 | syl | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑁  ∈  ℕ )  →  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ¬  ( 𝑤 ‘ 0 )  =  𝑃 ) ) | 
						
							| 19 | 18 | 3adant2 | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ¬  ( 𝑤 ‘ 0 )  =  𝑃 ) ) | 
						
							| 20 | 19 | ralrimiv | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∀ 𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) ¬  ( 𝑤 ‘ 0 )  =  𝑃 ) | 
						
							| 21 |  | rabeq0 | ⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  ∅  ↔  ∀ 𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) ¬  ( 𝑤 ‘ 0 )  =  𝑃 ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  ∅ ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 24 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  0 ) | 
						
							| 26 | 7 25 | eqtrd | ⊢ ( ( 𝐺  RegUSGraph  0  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 𝐿 𝑁 )  =  0 ) |