Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ♯ ‘ 𝐴 ) = 𝐾 ∧ 𝐴 = ∅ ) ↔ ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣 ∈ 𝑉 𝐴 = ∅ ) ) |
2 |
|
fveqeq2 |
⊢ ( 𝐴 = ∅ → ( ( ♯ ‘ 𝐴 ) = 𝐾 ↔ ( ♯ ‘ ∅ ) = 𝐾 ) ) |
3 |
2
|
biimpac |
⊢ ( ( ( ♯ ‘ 𝐴 ) = 𝐾 ∧ 𝐴 = ∅ ) → ( ♯ ‘ ∅ ) = 𝐾 ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ♯ ‘ 𝐴 ) = 𝐾 ∧ 𝐴 = ∅ ) → ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ∅ ) = 𝐾 ) |
5 |
|
hash1n0 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝑉 ≠ ∅ ) |
6 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ∅ ) = 𝐾 → ( ♯ ‘ ∅ ) = 𝐾 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ∅ ) = 𝐾 → ( ♯ ‘ ∅ ) = 𝐾 ) ) |
8 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
9 |
|
eqeq1 |
⊢ ( ( ♯ ‘ ∅ ) = 𝐾 → ( ( ♯ ‘ ∅ ) = 0 ↔ 𝐾 = 0 ) ) |
10 |
8 9
|
mpbii |
⊢ ( ( ♯ ‘ ∅ ) = 𝐾 → 𝐾 = 0 ) |
11 |
7 10
|
syl6com |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ∅ ) = 𝐾 → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐾 = 0 ) ) |
12 |
4 11
|
syl |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ♯ ‘ 𝐴 ) = 𝐾 ∧ 𝐴 = ∅ ) → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐾 = 0 ) ) |
13 |
1 12
|
sylbir |
⊢ ( ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣 ∈ 𝑉 𝐴 = ∅ ) → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐾 = 0 ) ) |
14 |
13
|
imp |
⊢ ( ( ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣 ∈ 𝑉 𝐴 = ∅ ) ∧ ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) ) → 𝐾 = 0 ) |