Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlkg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
3simpc |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
4 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
5 |
1 4
|
rusgrnumwwlklem |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
6 |
3 5
|
syl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑃 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
7 |
1 4
|
rusgrnumwwlk |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑃 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) 𝑁 ) = ( 𝐾 ↑ 𝑁 ) ) |
8 |
6 7
|
eqtr3d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) |