Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlkl1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
|
iswwlksn |
⊢ ( 1 ∈ ℕ0 → ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
6 |
1 5
|
iswwlks |
⊢ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) |
8 |
4 7
|
bitri |
⊢ ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) |
9 |
8
|
a1i |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) ) |
10 |
9
|
anbi1d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) |
11 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
12 |
11
|
eqeq2i |
⊢ ( ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ↔ ( ♯ ‘ 𝑤 ) = 2 ) |
13 |
12
|
a1i |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ↔ ( ♯ ‘ 𝑤 ) = 2 ) ) |
14 |
13
|
anbi2d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ) ) |
15 |
|
3anass |
⊢ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
16 |
15
|
a1i |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) |
18 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
19 |
17 18
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 ) |
20 |
|
2ne0 |
⊢ 2 ≠ 0 |
21 |
20
|
nesymi |
⊢ ¬ 0 = 2 |
22 |
|
eqeq1 |
⊢ ( ( ♯ ‘ 𝑤 ) = 0 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ 0 = 2 ) ) |
23 |
21 22
|
mtbiri |
⊢ ( ( ♯ ‘ 𝑤 ) = 0 → ¬ ( ♯ ‘ 𝑤 ) = 2 ) |
24 |
19 23
|
syl |
⊢ ( 𝑤 = ∅ → ¬ ( ♯ ‘ 𝑤 ) = 2 ) |
25 |
24
|
necon2ai |
⊢ ( ( ♯ ‘ 𝑤 ) = 2 → 𝑤 ≠ ∅ ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → 𝑤 ≠ ∅ ) |
27 |
26
|
biantrurd |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
28 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑤 ) = 2 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( 2 − 1 ) ) |
29 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
30 |
28 29
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑤 ) = 2 → ( ( ♯ ‘ 𝑤 ) − 1 ) = 1 ) |
31 |
30
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑤 ) = 2 → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ 1 ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ 1 ) ) |
33 |
32
|
raleqdv |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 1 ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
34 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
35 |
34
|
raleqi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 1 ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ { 0 } { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
36 |
|
c0ex |
⊢ 0 ∈ V |
37 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑤 ‘ 𝑖 ) = ( 𝑤 ‘ 0 ) ) |
38 |
|
fv0p1e1 |
⊢ ( 𝑖 = 0 → ( 𝑤 ‘ ( 𝑖 + 1 ) ) = ( 𝑤 ‘ 1 ) ) |
39 |
37 38
|
preq12d |
⊢ ( 𝑖 = 0 → { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ) |
40 |
39
|
eleq1d |
⊢ ( 𝑖 = 0 → ( { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
41 |
36 40
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { 0 } { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
42 |
35 41
|
bitri |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 1 ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
43 |
33 42
|
bitrdi |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
44 |
43
|
anbi2d |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
45 |
16 27 44
|
3bitr2d |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
46 |
45
|
ex |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑤 ) = 2 → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
47 |
46
|
pm5.32rd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ) ) |
48 |
14 47
|
bitrd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ) ) |
49 |
48
|
anbi1d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) |
50 |
|
anass |
⊢ ( ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) |
51 |
49 50
|
bitrdi |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) ) |
52 |
|
anass |
⊢ ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) ) |
53 |
|
ancom |
⊢ ( ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
54 |
|
df-3an |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
55 |
53 54
|
bitr4i |
⊢ ( ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
56 |
55
|
anbi2i |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
57 |
52 56
|
bitri |
⊢ ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
58 |
57
|
a1i |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
59 |
10 51 58
|
3bitrd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
60 |
59
|
rabbidva2 |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
61 |
60
|
fveq2d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
62 |
1
|
rusgrnumwrdl2 |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = 𝐾 ) |
63 |
61 62
|
eqtrd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = 𝐾 ) |