Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
rusgrnumwwlk.l |
⊢ 𝐿 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
3 |
|
simpr2 |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑃 ∈ 𝑉 ) |
4 |
|
simpr3 |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ0 ) |
5 |
1 2
|
rusgrnumwwlklem |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 𝐿 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
6 |
5
|
eqeq1d |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑃 𝐿 𝑁 ) = ( 𝐾 ↑ 𝑁 ) ↔ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ) |
7 |
3 4 6
|
syl2anc |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑃 𝐿 𝑁 ) = ( 𝐾 ↑ 𝑁 ) ↔ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ) |
8 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
9 |
8
|
wwlksnredwwlkn0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
10 |
9
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
14 |
13
|
rabbidva |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
17 |
|
simp2 |
⊢ ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) |
18 |
17
|
pm4.71ri |
⊢ ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( 𝑦 ‘ 0 ) = 𝑃 ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
19 |
18
|
a1i |
⊢ ( ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( 𝑦 ‘ 0 ) = 𝑃 ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
20 |
19
|
rexbidva |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑦 ‘ 0 ) = 𝑃 ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
21 |
|
fveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ‘ 0 ) = 𝑃 ↔ ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
23 |
22
|
rexrab |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑦 ‘ 0 ) = 𝑃 ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
24 |
20 23
|
bitr4di |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
25 |
24
|
rabbidva |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
27 |
26
|
fveq2d |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
28 |
|
simplr1 |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → 𝑉 ∈ Fin ) |
29 |
1
|
eleq1i |
⊢ ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin ) |
30 |
29
|
biimpi |
⊢ ( 𝑉 ∈ Fin → ( Vtx ‘ 𝐺 ) ∈ Fin ) |
31 |
|
eqid |
⊢ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) = ( ( 𝑁 + 1 ) WWalksN 𝐺 ) |
32 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } = { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } |
33 |
31 8 32
|
hashwwlksnext |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = Σ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
34 |
28 30 33
|
3syl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = Σ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
35 |
|
fveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ‘ 0 ) = ( 𝑤 ‘ 0 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ‘ 0 ) = 𝑃 ↔ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
37 |
36
|
cbvrabv |
⊢ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } |
38 |
37
|
sumeq1i |
⊢ Σ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
39 |
38
|
a1i |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → Σ 𝑦 ∈ { 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑥 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
40 |
27 34 39
|
3eqtrd |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
41 |
|
rusgrnumwwlkslem |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
42 |
41
|
eqcomd |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) |
43 |
42
|
fveq2d |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
44 |
43
|
adantl |
⊢ ( ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) ) |
45 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) → 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) |
47 |
1 8
|
wwlksnexthasheq |
⊢ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) ) |
49 |
1
|
rusgrpropadjvtx |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
50 |
|
fveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
51 |
50
|
eqeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
52 |
51
|
elrab |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ↔ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
53 |
1 8
|
wwlknp |
⊢ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) → ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
55 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑦 ∈ Word 𝑉 ) |
56 |
|
nn0p1gt0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 1 ) ) |
57 |
56
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 0 < ( 𝑁 + 1 ) ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 0 < ( 𝑁 + 1 ) ) |
59 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) → ( 0 < ( ♯ ‘ 𝑦 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
60 |
59
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 0 < ( ♯ ‘ 𝑦 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
61 |
58 60
|
mpbird |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 0 < ( ♯ ‘ 𝑦 ) ) |
62 |
|
hashle00 |
⊢ ( 𝑦 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑦 ) ≤ 0 ↔ 𝑦 = ∅ ) ) |
63 |
|
lencl |
⊢ ( 𝑦 ∈ Word 𝑉 → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
64 |
63
|
nn0red |
⊢ ( 𝑦 ∈ Word 𝑉 → ( ♯ ‘ 𝑦 ) ∈ ℝ ) |
65 |
|
0re |
⊢ 0 ∈ ℝ |
66 |
|
lenlt |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ♯ ‘ 𝑦 ) ≤ 0 ↔ ¬ 0 < ( ♯ ‘ 𝑦 ) ) ) |
67 |
66
|
bicomd |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ¬ 0 < ( ♯ ‘ 𝑦 ) ↔ ( ♯ ‘ 𝑦 ) ≤ 0 ) ) |
68 |
64 65 67
|
sylancl |
⊢ ( 𝑦 ∈ Word 𝑉 → ( ¬ 0 < ( ♯ ‘ 𝑦 ) ↔ ( ♯ ‘ 𝑦 ) ≤ 0 ) ) |
69 |
|
nne |
⊢ ( ¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅ ) |
70 |
69
|
a1i |
⊢ ( 𝑦 ∈ Word 𝑉 → ( ¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅ ) ) |
71 |
62 68 70
|
3bitr4rd |
⊢ ( 𝑦 ∈ Word 𝑉 → ( ¬ 𝑦 ≠ ∅ ↔ ¬ 0 < ( ♯ ‘ 𝑦 ) ) ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ¬ 𝑦 ≠ ∅ ↔ ¬ 0 < ( ♯ ‘ 𝑦 ) ) ) |
73 |
72
|
con4bid |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑦 ≠ ∅ ↔ 0 < ( ♯ ‘ 𝑦 ) ) ) |
74 |
61 73
|
mpbird |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑦 ≠ ∅ ) |
75 |
55 74
|
jca |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) ) |
76 |
75
|
ex |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) ) ) |
77 |
76
|
3adant3 |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) ) ) |
78 |
54 77
|
syl |
⊢ ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) ) ) |
79 |
52 78
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) ) ) |
80 |
79
|
imp |
⊢ ( ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) ) |
81 |
|
lswcl |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅ ) → ( lastS ‘ 𝑦 ) ∈ 𝑉 ) |
82 |
80 81
|
syl |
⊢ ( ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( lastS ‘ 𝑦 ) ∈ 𝑉 ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) → ( lastS ‘ 𝑦 ) ∈ 𝑉 ) |
84 |
|
preq1 |
⊢ ( 𝑝 = ( lastS ‘ 𝑦 ) → { 𝑝 , 𝑛 } = { ( lastS ‘ 𝑦 ) , 𝑛 } ) |
85 |
84
|
eleq1d |
⊢ ( 𝑝 = ( lastS ‘ 𝑦 ) → ( { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) ) ) |
86 |
85
|
rabbidv |
⊢ ( 𝑝 = ( lastS ‘ 𝑦 ) → { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } = { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) |
87 |
86
|
fveqeq2d |
⊢ ( 𝑝 = ( lastS ‘ 𝑦 ) → ( ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ↔ ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
88 |
87
|
rspcva |
⊢ ( ( ( lastS ‘ 𝑦 ) ∈ 𝑉 ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
89 |
83 88
|
sylancom |
⊢ ( ( ( ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
90 |
89
|
exp41 |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) → ( ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) ) ) |
91 |
90
|
com14 |
⊢ ( ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) → ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) ) ) |
92 |
91
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { 𝑝 , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) → ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) ) ) |
93 |
49 92
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) → ( 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) ) ) |
94 |
93
|
imp41 |
⊢ ( ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) → ( ♯ ‘ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑦 ) , 𝑛 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
95 |
44 48 94
|
3eqtrd |
⊢ ( ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) ∧ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = 𝐾 ) |
96 |
95
|
sumeq2dv |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } 𝐾 ) |
97 |
|
oveq1 |
⊢ ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) · 𝐾 ) = ( ( 𝐾 ↑ 𝑁 ) · 𝐾 ) ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) · 𝐾 ) = ( ( 𝐾 ↑ 𝑁 ) · 𝐾 ) ) |
99 |
|
wwlksnfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
100 |
29 99
|
sylbi |
⊢ ( 𝑉 ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
101 |
100
|
3ad2ant1 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
102 |
101
|
ad2antlr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
103 |
|
rabfi |
⊢ ( ( 𝑁 WWalksN 𝐺 ) ∈ Fin → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∈ Fin ) |
104 |
102 103
|
syl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∈ Fin ) |
105 |
|
rusgrusgr |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph ) |
106 |
|
simp1 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑉 ∈ Fin ) |
107 |
105 106
|
anim12i |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
108 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
109 |
107 108
|
sylibr |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐺 ∈ FinUSGraph ) |
110 |
|
simpl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐺 RegUSGraph 𝐾 ) |
111 |
|
ne0i |
⊢ ( 𝑃 ∈ 𝑉 → 𝑉 ≠ ∅ ) |
112 |
111
|
3ad2ant2 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑉 ≠ ∅ ) |
113 |
112
|
adantl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑉 ≠ ∅ ) |
114 |
1
|
frusgrnn0 |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 ) |
115 |
109 110 113 114
|
syl3anc |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐾 ∈ ℕ0 ) |
116 |
115
|
nn0cnd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐾 ∈ ℂ ) |
117 |
116
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → 𝐾 ∈ ℂ ) |
118 |
|
fsumconst |
⊢ ( ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ∈ Fin ∧ 𝐾 ∈ ℂ ) → Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } 𝐾 = ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) · 𝐾 ) ) |
119 |
104 117 118
|
syl2anc |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } 𝐾 = ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) · 𝐾 ) ) |
120 |
116 4
|
expp1d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐾 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐾 ↑ 𝑁 ) · 𝐾 ) ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( 𝐾 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐾 ↑ 𝑁 ) · 𝐾 ) ) |
122 |
98 119 121
|
3eqtr4d |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } 𝐾 = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) |
123 |
96 122
|
eqtrd |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → Σ 𝑦 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑤 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) |
124 |
16 40 123
|
3eqtrd |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) |
125 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
126 |
125
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
127 |
126
|
adantl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
128 |
1 2
|
rusgrnumwwlklem |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
129 |
128
|
eqeq1d |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ↔ ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) ) |
130 |
3 127 129
|
syl2anc |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ↔ ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) ) |
131 |
130
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ↔ ( ♯ ‘ { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) ) |
132 |
124 131
|
mpbird |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) ∧ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) ) → ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) |
133 |
132
|
ex |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾 ↑ 𝑁 ) → ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) ) |
134 |
7 133
|
sylbid |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑃 𝐿 𝑁 ) = ( 𝐾 ↑ 𝑁 ) → ( 𝑃 𝐿 ( 𝑁 + 1 ) ) = ( 𝐾 ↑ ( 𝑁 + 1 ) ) ) ) |