Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑤 = 𝑌 → ( 𝑤 ‘ 0 ) = ( 𝑌 ‘ 0 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑌 ‘ 0 ) = 𝑃 ) ) |
3 |
2
|
elrab |
⊢ ( 𝑌 ∈ { 𝑤 ∈ 𝑍 ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ↔ ( 𝑌 ∈ 𝑍 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ) ) |
4 |
|
ibar |
⊢ ( ( 𝑌 ‘ 0 ) = 𝑃 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) |
5 |
|
3anass |
⊢ ( ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜑 ∧ 𝜓 ) ↔ ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
6 |
|
3ancoma |
⊢ ( ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜓 ) ) |
7 |
5 6
|
bitr3i |
⊢ ( ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜓 ) ) |
8 |
4 7
|
bitrdi |
⊢ ( ( 𝑌 ‘ 0 ) = 𝑃 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜓 ) ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑌 ∈ 𝑍 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜓 ) ) ) |
10 |
9
|
rabbidva |
⊢ ( ( 𝑌 ∈ 𝑍 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ) → { 𝑤 ∈ 𝑋 ∣ ( 𝜑 ∧ 𝜓 ) } = { 𝑤 ∈ 𝑋 ∣ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜓 ) } ) |
11 |
3 10
|
sylbi |
⊢ ( 𝑌 ∈ { 𝑤 ∈ 𝑍 ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → { 𝑤 ∈ 𝑋 ∣ ( 𝜑 ∧ 𝜓 ) } = { 𝑤 ∈ 𝑋 ∣ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ∧ 𝜓 ) } ) |