| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgrusgrprc |
⊢ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V |
| 2 |
|
vex |
⊢ 𝑔 ∈ V |
| 3 |
|
0xnn0 |
⊢ 0 ∈ ℕ0* |
| 4 |
|
eqid |
⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) |
| 5 |
|
eqid |
⊢ ( VtxDeg ‘ 𝑔 ) = ( VtxDeg ‘ 𝑔 ) |
| 6 |
4 5
|
isrusgr0 |
⊢ ( ( 𝑔 ∈ V ∧ 0 ∈ ℕ0* ) → ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
| 7 |
2 3 6
|
mp2an |
⊢ ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
| 8 |
|
3ancomb |
⊢ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ↔ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ∧ 0 ∈ ℕ0* ) ) |
| 9 |
|
df-3an |
⊢ ( ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ∧ 0 ∈ ℕ0* ) ↔ ( ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ∧ 0 ∈ ℕ0* ) ) |
| 10 |
3 9
|
mpbiran2 |
⊢ ( ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ∧ 0 ∈ ℕ0* ) ↔ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
| 11 |
7 8 10
|
3bitri |
⊢ ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
| 12 |
11
|
abbii |
⊢ { 𝑔 ∣ 𝑔 RegUSGraph 0 } = { 𝑔 ∣ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) } |
| 13 |
|
df-rab |
⊢ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∣ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) } |
| 14 |
12 13
|
eqtr4i |
⊢ { 𝑔 ∣ 𝑔 RegUSGraph 0 } = { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } |
| 15 |
|
neleq1 |
⊢ ( { 𝑔 ∣ 𝑔 RegUSGraph 0 } = { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } → ( { 𝑔 ∣ 𝑔 RegUSGraph 0 } ∉ V ↔ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( { 𝑔 ∣ 𝑔 RegUSGraph 0 } ∉ V ↔ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ) |
| 17 |
1 16
|
mpbir |
⊢ { 𝑔 ∣ 𝑔 RegUSGraph 0 } ∉ V |