Metamath Proof Explorer


Theorem rusgrprc

Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rusgrprc { 𝑔𝑔 RegUSGraph 0 } ∉ V

Proof

Step Hyp Ref Expression
1 rgrusgrprc { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V
2 vex 𝑔 ∈ V
3 0xnn0 0 ∈ ℕ0*
4 eqid ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 )
5 eqid ( VtxDeg ‘ 𝑔 ) = ( VtxDeg ‘ 𝑔 )
6 4 5 isrusgr0 ( ( 𝑔 ∈ V ∧ 0 ∈ ℕ0* ) → ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) )
7 2 3 6 mp2an ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) )
8 3ancomb ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ↔ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ∧ 0 ∈ ℕ0* ) )
9 df-3an ( ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ∧ 0 ∈ ℕ0* ) ↔ ( ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ∧ 0 ∈ ℕ0* ) )
10 3 9 mpbiran2 ( ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ∧ 0 ∈ ℕ0* ) ↔ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) )
11 7 8 10 3bitri ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) )
12 11 abbii { 𝑔𝑔 RegUSGraph 0 } = { 𝑔 ∣ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) }
13 df-rab { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∣ ( 𝑔 ∈ USGraph ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) }
14 12 13 eqtr4i { 𝑔𝑔 RegUSGraph 0 } = { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 }
15 neleq1 ( { 𝑔𝑔 RegUSGraph 0 } = { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } → ( { 𝑔𝑔 RegUSGraph 0 } ∉ V ↔ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ) )
16 14 15 ax-mp ( { 𝑔𝑔 RegUSGraph 0 } ∉ V ↔ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V )
17 1 16 mpbir { 𝑔𝑔 RegUSGraph 0 } ∉ V