Metamath Proof Explorer


Theorem rusgrprop

Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 18-Dec-2020)

Ref Expression
Assertion rusgrprop ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) )

Proof

Step Hyp Ref Expression
1 df-rusgr RegUSGraph = { ⟨ 𝑔 , 𝑘 ⟩ ∣ ( 𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘 ) }
2 1 bropaex12 ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) )
3 isrusgr ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) )
4 3 biimpd ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) )
5 2 4 mpcom ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) )