Metamath Proof Explorer


Theorem rusgrprop0

Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion rusgrprop0 ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 rusgrprop ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) )
4 1 2 rgrprop ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )
5 4 anim2i ( ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) → ( 𝐺 ∈ USGraph ∧ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
6 3anass ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
7 5 6 sylibr ( ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )
8 3 7 syl ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )