Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrpropnb.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
rusgrpropnb |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) ) |
3 |
|
simp1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → 𝐺 ∈ USGraph ) |
4 |
|
simp2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → 𝐾 ∈ ℕ0* ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
6 |
1 5
|
nbusgrvtx |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑣 ) = { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) |
11 |
9 10
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
12 |
11
|
ex |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
13 |
12
|
ralimdva |
⊢ ( 𝐺 ∈ USGraph → ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
16 |
3 4 15
|
3jca |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
17 |
2 16
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑘 ∈ 𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |