Metamath Proof Explorer


Theorem rusgrpropedg

Description: The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020) (Revised by AV, 27-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion rusgrpropedg ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 rusgrpropnb ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )
3 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
4 1 3 nbedgusgr ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) )
5 4 eqeq1d ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ↔ ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
6 5 biimpd ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
7 6 ralimdva ( 𝐺 ∈ USGraph → ( ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
8 7 adantr ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) → ( ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
9 8 imdistani ( ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
10 df-3an ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) ↔ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )
11 df-3an ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) ↔ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
12 9 10 11 3imtr4i ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )
13 2 12 syl ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣𝑒 } ) = 𝐾 ) )