Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrpropnb.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
rusgrpropnb |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) ) |
3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
4 |
1 3
|
nbedgusgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ↔ ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
6 |
5
|
biimpd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
7 |
6
|
ralimdva |
⊢ ( 𝐺 ∈ USGraph → ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) → ( ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
9 |
8
|
imdistani |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
10 |
|
df-3an |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) ↔ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) ) |
11 |
|
df-3an |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ↔ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
12 |
9 10 11
|
3imtr4i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |
13 |
2 12
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑣 ∈ 𝑒 } ) = 𝐾 ) ) |