Metamath Proof Explorer
Theorem ruv
Description: The Russell class is equal to the universe _V . Exercise 5 of
TakeutiZaring p. 22. (Contributed by Alan Sare, 4-Oct-2008)
|
|
Ref |
Expression |
|
Assertion |
ruv |
⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } = V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
elirr |
⊢ ¬ 𝑥 ∈ 𝑥 |
3 |
2
|
nelir |
⊢ 𝑥 ∉ 𝑥 |
4 |
1 3
|
2th |
⊢ ( 𝑥 ∈ V ↔ 𝑥 ∉ 𝑥 ) |
5 |
4
|
abbi2i |
⊢ V = { 𝑥 ∣ 𝑥 ∉ 𝑥 } |
6 |
5
|
eqcomi |
⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } = V |