Step |
Hyp |
Ref |
Expression |
1 |
|
dfcleq |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
2 |
1
|
biimpi |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
3 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ ) |
4 |
|
sbv |
⊢ ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ ) |
5 |
3 4
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ ) |
6 |
5
|
bibi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
7 |
|
nbfal |
⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
8 |
|
pm2.21 |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
9 |
7 8
|
sylbir |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ ⊥ ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
10 |
6 9
|
sylbi |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
11 |
2 10
|
sylg |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
12 |
|
dfnul4 |
⊢ ∅ = { 𝑦 ∣ ⊥ } |
13 |
12
|
eqeq2i |
⊢ ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } ) |
14 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
15 |
11 13 14
|
3imtr4i |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) |