Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
2 1 biimpi ( 𝐴 = { 𝑦 ∣ ⊥ } → ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
3 df-clab ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ )
4 sbv ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ )
5 3 4 bitri ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ )
6 5 bibi2i ( ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ( 𝑥𝐴 ↔ ⊥ ) )
7 nbfal ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 ↔ ⊥ ) )
8 pm2.21 ( ¬ 𝑥𝐴 → ( 𝑥𝐴𝜑 ) )
9 7 8 sylbir ( ( 𝑥𝐴 ↔ ⊥ ) → ( 𝑥𝐴𝜑 ) )
10 6 9 sylbi ( ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) → ( 𝑥𝐴𝜑 ) )
11 2 10 sylg ( 𝐴 = { 𝑦 ∣ ⊥ } → ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
12 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
13 12 eqeq2i ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } )
14 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
15 11 13 14 3imtr4i ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )