Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by GG, 2-Sep-2024)

Ref Expression
Assertion rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 biidd ( 𝑦 = 𝑥 → ( ⊥ ↔ ⊥ ) )
2 1 eqabbw ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
3 2 biimpi ( 𝐴 = { 𝑦 ∣ ⊥ } → ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
4 nbfal ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 ↔ ⊥ ) )
5 pm2.21 ( ¬ 𝑥𝐴 → ( 𝑥𝐴𝜑 ) )
6 4 5 sylbir ( ( 𝑥𝐴 ↔ ⊥ ) → ( 𝑥𝐴𝜑 ) )
7 3 6 sylg ( 𝐴 = { 𝑦 ∣ ⊥ } → ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
8 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
9 8 eqeq2i ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } )
10 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
11 7 9 10 3imtr4i ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )