| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rzgrp.r |
⊢ 𝑅 = ( ℝfld /s ( ℝfld ~QG ℤ ) ) |
| 2 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
| 3 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 4 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 5 |
4
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 6 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 7 |
6
|
subsubrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ( ℤ ∈ ( SubRing ‘ ℝfld ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℝ ) ) ) |
| 8 |
5 7
|
ax-mp |
⊢ ( ℤ ∈ ( SubRing ‘ ℝfld ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℝ ) ) |
| 9 |
2 3 8
|
mpbir2an |
⊢ ℤ ∈ ( SubRing ‘ ℝfld ) |
| 10 |
|
subrgsubg |
⊢ ( ℤ ∈ ( SubRing ‘ ℝfld ) → ℤ ∈ ( SubGrp ‘ ℝfld ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ℤ ∈ ( SubGrp ‘ ℝfld ) |
| 12 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 14 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 16 |
13 15
|
addcomd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 17 |
16
|
eleq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) ) |
| 18 |
17
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) |
| 19 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 20 |
|
replusg |
⊢ + = ( +g ‘ ℝfld ) |
| 21 |
19 20
|
isnsg |
⊢ ( ℤ ∈ ( NrmSGrp ‘ ℝfld ) ↔ ( ℤ ∈ ( SubGrp ‘ ℝfld ) ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) ) ) |
| 22 |
11 18 21
|
mpbir2an |
⊢ ℤ ∈ ( NrmSGrp ‘ ℝfld ) |
| 23 |
1
|
qusgrp |
⊢ ( ℤ ∈ ( NrmSGrp ‘ ℝfld ) → 𝑅 ∈ Grp ) |
| 24 |
22 23
|
ax-mp |
⊢ 𝑅 ∈ Grp |