Step |
Hyp |
Ref |
Expression |
1 |
|
rzgrp.r |
⊢ 𝑅 = ( ℝfld /s ( ℝfld ~QG ℤ ) ) |
2 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
3 |
|
zssre |
⊢ ℤ ⊆ ℝ |
4 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
5 |
4
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
6 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
7 |
6
|
subsubrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ( ℤ ∈ ( SubRing ‘ ℝfld ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℝ ) ) ) |
8 |
5 7
|
ax-mp |
⊢ ( ℤ ∈ ( SubRing ‘ ℝfld ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℝ ) ) |
9 |
2 3 8
|
mpbir2an |
⊢ ℤ ∈ ( SubRing ‘ ℝfld ) |
10 |
|
subrgsubg |
⊢ ( ℤ ∈ ( SubRing ‘ ℝfld ) → ℤ ∈ ( SubGrp ‘ ℝfld ) ) |
11 |
9 10
|
ax-mp |
⊢ ℤ ∈ ( SubGrp ‘ ℝfld ) |
12 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
14 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
16 |
13 15
|
addcomd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
17 |
16
|
eleq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) ) |
18 |
17
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) |
19 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
20 |
|
replusg |
⊢ + = ( +g ‘ ℝfld ) |
21 |
19 20
|
isnsg |
⊢ ( ℤ ∈ ( NrmSGrp ‘ ℝfld ) ↔ ( ℤ ∈ ( SubGrp ‘ ℝfld ) ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) ) ) |
22 |
11 18 21
|
mpbir2an |
⊢ ℤ ∈ ( NrmSGrp ‘ ℝfld ) |
23 |
1
|
qusgrp |
⊢ ( ℤ ∈ ( NrmSGrp ‘ ℝfld ) → 𝑅 ∈ Grp ) |
24 |
22 23
|
ax-mp |
⊢ 𝑅 ∈ Grp |