Metamath Proof Explorer


Theorem s111

Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s111 ( ( 𝑆𝐴𝑇𝐴 ) → ( ⟨“ 𝑆 ”⟩ = ⟨“ 𝑇 ”⟩ ↔ 𝑆 = 𝑇 ) )

Proof

Step Hyp Ref Expression
1 s1val ( 𝑆𝐴 → ⟨“ 𝑆 ”⟩ = { ⟨ 0 , 𝑆 ⟩ } )
2 s1val ( 𝑇𝐴 → ⟨“ 𝑇 ”⟩ = { ⟨ 0 , 𝑇 ⟩ } )
3 1 2 eqeqan12d ( ( 𝑆𝐴𝑇𝐴 ) → ( ⟨“ 𝑆 ”⟩ = ⟨“ 𝑇 ”⟩ ↔ { ⟨ 0 , 𝑆 ⟩ } = { ⟨ 0 , 𝑇 ⟩ } ) )
4 opex ⟨ 0 , 𝑆 ⟩ ∈ V
5 sneqbg ( ⟨ 0 , 𝑆 ⟩ ∈ V → ( { ⟨ 0 , 𝑆 ⟩ } = { ⟨ 0 , 𝑇 ⟩ } ↔ ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ) )
6 4 5 mp1i ( ( 𝑆𝐴𝑇𝐴 ) → ( { ⟨ 0 , 𝑆 ⟩ } = { ⟨ 0 , 𝑇 ⟩ } ↔ ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ) )
7 0z 0 ∈ ℤ
8 eqid 0 = 0
9 opthg ( ( 0 ∈ ℤ ∧ 𝑆𝐴 ) → ( ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ↔ ( 0 = 0 ∧ 𝑆 = 𝑇 ) ) )
10 9 baibd ( ( ( 0 ∈ ℤ ∧ 𝑆𝐴 ) ∧ 0 = 0 ) → ( ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ↔ 𝑆 = 𝑇 ) )
11 8 10 mpan2 ( ( 0 ∈ ℤ ∧ 𝑆𝐴 ) → ( ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ↔ 𝑆 = 𝑇 ) )
12 7 11 mpan ( 𝑆𝐴 → ( ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ↔ 𝑆 = 𝑇 ) )
13 12 adantr ( ( 𝑆𝐴𝑇𝐴 ) → ( ⟨ 0 , 𝑆 ⟩ = ⟨ 0 , 𝑇 ⟩ ↔ 𝑆 = 𝑇 ) )
14 3 6 13 3bitrd ( ( 𝑆𝐴𝑇𝐴 ) → ( ⟨“ 𝑆 ”⟩ = ⟨“ 𝑇 ”⟩ ↔ 𝑆 = 𝑇 ) )