Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 23-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s1cl | ⊢ ( 𝐴 ∈ 𝐵 → 〈“ 𝐴 ”〉 ∈ Word 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val | ⊢ ( 𝐴 ∈ 𝐵 → 〈“ 𝐴 ”〉 = { 〈 0 , 𝐴 〉 } ) | |
| 2 | snopiswrd | ⊢ ( 𝐴 ∈ 𝐵 → { 〈 0 , 𝐴 〉 } ∈ Word 𝐵 ) | |
| 3 | 1 2 | eqeltrd | ⊢ ( 𝐴 ∈ 𝐵 → 〈“ 𝐴 ”〉 ∈ Word 𝐵 ) |