Metamath Proof Explorer


Theorem s1cl

Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 23-Nov-2018)

Ref Expression
Assertion s1cl ( 𝐴𝐵 → ⟨“ 𝐴 ”⟩ ∈ Word 𝐵 )

Proof

Step Hyp Ref Expression
1 s1val ( 𝐴𝐵 → ⟨“ 𝐴 ”⟩ = { ⟨ 0 , 𝐴 ⟩ } )
2 snopiswrd ( 𝐴𝐵 → { ⟨ 0 , 𝐴 ⟩ } ∈ Word 𝐵 )
3 1 2 eqeltrd ( 𝐴𝐵 → ⟨“ 𝐴 ”⟩ ∈ Word 𝐵 )