Metamath Proof Explorer


Theorem s1cld

Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypothesis s1cld.1 ( 𝜑𝐴𝐵 )
Assertion s1cld ( 𝜑 → ⟨“ 𝐴 ”⟩ ∈ Word 𝐵 )

Proof

Step Hyp Ref Expression
1 s1cld.1 ( 𝜑𝐴𝐵 )
2 s1cl ( 𝐴𝐵 → ⟨“ 𝐴 ”⟩ ∈ Word 𝐵 )
3 1 2 syl ( 𝜑 → ⟨“ 𝐴 ”⟩ ∈ Word 𝐵 )