Metamath Proof Explorer


Theorem s1eq

Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1eq ( 𝐴 = 𝐵 → ⟨“ 𝐴 ”⟩ = ⟨“ 𝐵 ”⟩ )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐴 = 𝐵 → ( I ‘ 𝐴 ) = ( I ‘ 𝐵 ) )
2 1 opeq2d ( 𝐴 = 𝐵 → ⟨ 0 , ( I ‘ 𝐴 ) ⟩ = ⟨ 0 , ( I ‘ 𝐵 ) ⟩ )
3 2 sneqd ( 𝐴 = 𝐵 → { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ } = { ⟨ 0 , ( I ‘ 𝐵 ) ⟩ } )
4 df-s1 ⟨“ 𝐴 ”⟩ = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
5 df-s1 ⟨“ 𝐵 ”⟩ = { ⟨ 0 , ( I ‘ 𝐵 ) ⟩ }
6 3 4 5 3eqtr4g ( 𝐴 = 𝐵 → ⟨“ 𝐴 ”⟩ = ⟨“ 𝐵 ”⟩ )