Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | s1eqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | s1eqd | ⊢ ( 𝜑 → 〈“ 𝐴 ”〉 = 〈“ 𝐵 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1eqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | s1eq | ⊢ ( 𝐴 = 𝐵 → 〈“ 𝐴 ”〉 = 〈“ 𝐵 ”〉 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → 〈“ 𝐴 ”〉 = 〈“ 𝐵 ”〉 ) |