Metamath Proof Explorer


Theorem s1eqd

Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypothesis s1eqd.1 ( 𝜑𝐴 = 𝐵 )
Assertion s1eqd ( 𝜑 → ⟨“ 𝐴 ”⟩ = ⟨“ 𝐵 ”⟩ )

Proof

Step Hyp Ref Expression
1 s1eqd.1 ( 𝜑𝐴 = 𝐵 )
2 s1eq ( 𝐴 = 𝐵 → ⟨“ 𝐴 ”⟩ = ⟨“ 𝐵 ”⟩ )
3 1 2 syl ( 𝜑 → ⟨“ 𝐴 ”⟩ = ⟨“ 𝐵 ”⟩ )