Metamath Proof Explorer


Theorem s1fv

Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1fv ( 𝐴𝐵 → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 s1val ( 𝐴𝐵 → ⟨“ 𝐴 ”⟩ = { ⟨ 0 , 𝐴 ⟩ } )
2 1 fveq1d ( 𝐴𝐵 → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = ( { ⟨ 0 , 𝐴 ⟩ } ‘ 0 ) )
3 0nn0 0 ∈ ℕ0
4 fvsng ( ( 0 ∈ ℕ0𝐴𝐵 ) → ( { ⟨ 0 , 𝐴 ⟩ } ‘ 0 ) = 𝐴 )
5 3 4 mpan ( 𝐴𝐵 → ( { ⟨ 0 , 𝐴 ⟩ } ‘ 0 ) = 𝐴 )
6 2 5 eqtrd ( 𝐴𝐵 → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = 𝐴 )