Metamath Proof Explorer


Theorem s1len

Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1len ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1

Proof

Step Hyp Ref Expression
1 df-s1 ⟨“ 𝐴 ”⟩ = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
2 1 fveq2i ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = ( ♯ ‘ { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ } )
3 opex ⟨ 0 , ( I ‘ 𝐴 ) ⟩ ∈ V
4 hashsng ( ⟨ 0 , ( I ‘ 𝐴 ) ⟩ ∈ V → ( ♯ ‘ { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ } ) = 1 )
5 3 4 ax-mp ( ♯ ‘ { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ } ) = 1
6 2 5 eqtri ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1