Metamath Proof Explorer


Theorem s1rn

Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Assertion s1rn ( 𝐴𝑉 → ran ⟨“ 𝐴 ”⟩ = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 s1val ( 𝐴𝑉 → ⟨“ 𝐴 ”⟩ = { ⟨ 0 , 𝐴 ⟩ } )
2 1 rneqd ( 𝐴𝑉 → ran ⟨“ 𝐴 ”⟩ = ran { ⟨ 0 , 𝐴 ⟩ } )
3 c0ex 0 ∈ V
4 3 rnsnop ran { ⟨ 0 , 𝐴 ⟩ } = { 𝐴 }
5 2 4 eqtrdi ( 𝐴𝑉 → ran ⟨“ 𝐴 ”⟩ = { 𝐴 } )